Пять агрегатных состояний вещества. Общая характеристика агрегатного состояния вещества

Агрегатным состоянием вещества принято называть его способность сохранять свою форму и объем. Дополнительный признак – способы перехода вещества их одного агрегатного состояния в другое. Исходя из этого, выделяют три агрегатных состояния: твердое тело, жидкость и газ. Видимые свойства их таковы:

Твердое тело – сохраняет и форму, и объем. Может переходить как в жидкость путем плавления, так и непосредственно в газ путем сублимации.
- Жидкость – сохраняет объем, но не форму, то есть обладает текучестью. Пролитая жидкость стремится неограниченно растечься по поверхности, на которую вылита. В твердое тело жидкость может перейти путем кристаллизации, а в газ – путем испарения.
- Газ – не сохраняет ни формы, ни объема. Газ вне какого-нибудь вместилища стремится неограниченно расшириться во все стороны. Помешать ему в этом может только сила тяжести, благодаря чему земная атмосфера не рассеивается в космос. В жидкость газ переходит путем конденсации, а непосредственно в твердое тело может перейти путем осаждения.

Фазовые переходы

Переход вещества из одного агрегатного состояния в другое называется фазовым переходом, так как научный агрегатного состояния – фаза вещества. Например, вода может существовать в твердой фазе (лед), жидкой (обычная вода) и газообразной (водяной пар).

На примере воды также хорошо демонстрируется . Вывешенное во дворе на просушку в морозный безветренный день тут же промерзает, но спустя некоторое время оказывается сухим: лед сублимирует, непосредственно переходя в водяной пар.

Как правило, фазовый переход из твердого тела в жидкость и газ требует нагрева, но температура среды при этом не повышается: тепловая энергия уходит на разрыв внутренних связей в веществе. Это так называемая скрытая теплота . При обратных фазовых переходах (конденсации, кристаллизации) эта теплота выделяется.

Именно поэтому так опасны ожоги паром. Попадая на кожу, он конденсируется. Скрытая теплота испарения/конденсации воды очень велика: вода в этом отношении – аномальное вещество; именно поэтому и возможна жизнь на Земле. При ожоге паром скрытая теплота конденсации воды «прошпаривает» обожженное место очень глубоко, и последствия парового ожога оказываются куда тяжелее, чем от пламени на такой же площади тела.

Псевдофазы

Текучесть жидкой фазы вещества определяется ее вязкостью, а вязкость – характером внутренних связей, которым посвящен следующий раздел. Вязкость жидкости может быть очень высокой, и такая жидкость может течь незаметно для глаза.

Классический пример – стекло. Оно не твердое тело, а очень вязкая жидкость. Обратите внимание, что листы стекла на складах никогда не хранят прислоненными наискось к стене. Уже через несколько дней они прогнутся под собственной тяжестью и окажутся непригодными к употреблению.

Другие примеры псевдотвердых тел – сапожный вар и строительный битум. Если забыть угловатый кусок битума на крыше, за лето он растечется в лепешку и прилипнет к основе. Псевдотвердые тела отличить от настоящих можно по характеру плавления: настоящие при нем либо сохраняют свою форму, пока враз не растекутся (припой при пайке), либо оплывают, пуская лужицы и ручейки (лед). А очень вязкие жидкости постепенно размягчаются, как тот же вар или битум.

Чрезвычайно вязкими жидкостями, текучесть которых не заметна на протяжении многих лет и десятилетий, являются пластики. Высокая их способность сохранять форму обеспечивается огромным молекулярным весом полимеров, во многие тысячи и миллионы атомов водорода.

Структура фаз вещества

В газовой фазе молекулы или атомы вещества отстоят друг от друга очень далеко, во много раз больше, чем расстояние между ними. Взаимодействуют они между собой изредка и нерегулярно, только при столкновениях. Само взаимодействие упругое: столкнулись, как твердые шарики, и тут же разлетелись.

В жидкости молекулы/атомы постоянно «чувствуют» друг друга за счет очень слабых связей химической природы. Эти связи все время рвутся и тут же опять восстанавливаются, молекулы жидкости непрерывно перемещаются относительно друг друга, поэтому жидкость и течет. Но чтобы превратить ее в газ, нужно разорвать все связи сразу, а на это нужно очень много энергии, потому жидкость и сохраняет объем.

Вода в этом отношении отличается от прочих веществ тем, что ее молекулы в жидкости связаны так называемыми водородными связями, довольно прочными. Поэтому вода и может быть жидкостью при нормальной для жизни температуре. Многие вещества с молекулярной массой в десятки и сотни раз больше, чем у воды, в нормальных условиях – газы, как хотя бы обычный бытовой газ.

В твердом теле все его молекулы прочно стоят на своих местах благодаря сильным химическим связям между ними, образуя кристаллическую решетку. Кристаллы правильной формы требуют для своего роста особых условий и потому в природе встречаются редко. Большинство твердых тел представляют собой прочно сцепленные силами механической и электрической природы конгломераты мелких и мельчайших кристалликов – кристаллитов.

Если читателю доводилось видеть, например, треснувшую полуось автомобиля или чугунный колосник, то зерна кристаллитов на сломе там видны простым глазом. А на осколках разбитой фарфоровой или фаянсовой посуды их можно наблюдать под лупой.

Плазма

Физики выделяют и четвертое агрегатное состояние вещества – плазму. В плазме электроны оторваны от атомных ядер, и она представляет собой смесь электрически заряженных частиц. Плазма может быть очень плотной. Например, один кубический сантиметр плазмы из недр звезд – белых карликов, весит десятки и сотни тонн.

Плазму выделяют в отдельное агрегатное состояние потому, что она активно взаимодействует с электромагнитными полями из-за того, что ее частицы заряжены. В свободном пространстве плазма стремится расшириться, остывая и переходя в газ. Но под воздействием электромагнитных полей она может вне сосуда сохранять форму и объем, как твердое тело. Это свойство плазмы используется в термоядерных энергетических реакторах – прообразах энергоустановок будущего.

Любое вещество состоит из молекул, а его физические свойства зависят от того, каким образом упорядочены молекулы и как они взаимодействуют между собой. В обычной жизни мы наблюдаем три агрегатных состояния вещества - твердое, жидкое и газообразное.

Например, вода может находиться в твердом (лед), жидком (вода) и газообразном (пар) состояниях.

Газ расширяется, пока не заполнит весь отведенный ему объем. Если рассмотреть газ на молекулярном уровне, мы увидим беспорядочно мечущиеся и сталкивающиеся между собой и со стенками сосуда молекулы, которые, однако, практически не вступают во взаимодействие друг с другом. Если увеличить или уменьшить объем сосуда, молекулы равномерно перераспределятся в новом объеме.

В отличие от газа при заданной температуре занимает фиксированный объем, однако и она принимает форму заполняемого сосуда - но только ниже уровня ее поверхности. На молекулярном уровне жидкость проще всего представить в виде молекул-шариков, которые хотя и находятся в тесном контакте друг с другом, однако имеют свободу перекатываться друг относительно друга, подобно круглым бусинам в банке. Налейте жидкость в сосуд - и молекулы быстро растекутся и заполнят нижнюю часть объема сосуда, в результате жидкость примет его форму, но не распространится в полном объеме сосуда.

Твердое тело имеет собственную форму, не растекается по объему контейнера и не принимает его форму. На микроскопическом уровне атомы прикрепляются друг к другу химическими связями, и их положение друг относительно друга фиксировано. При этом они могут образовывать как жесткие упорядоченные структуры - кристаллические решетки, - так и беспорядочное нагромождение - аморфные тела (именно такова структура полимеров, которые похожи на перепутанные и слипшиеся макароны в миске).

Выше были описаны три классических агрегатных состояния вещества. Имеется, однако, и четвертое состояние, которые физики склонны относить к числу агрегатных. Это плазменное состояние. Плазма характеризуется частичным или полным срывом электронов с их атомных орбит, при этом сами свободные электроны остаются внутри вещества.

Изменение агрегатных состояний вещества мы можем наблюдать воочию в природе. Вода с поверхности водоемов испаряется, и образуются облака. Так жидкость переходит в газ. Зимой вода в водоемах замерзает, переходя в твердое состояние, а весной вновь тает, переходя в обратно в жидкость. Что происходит с молекулами вещества при переходе его из одного состояния в другое? Меняются ли они? Отличаются ли, например, молекулы льда от молекул пара? Ответ однозначный: нет. Молекулы остаются абсолютно теми же. Меняется их кинетическая энергия, а соответственно и свойства вещества.

Энергия молекул пара достаточно велика, чтобы разлетаться в разные стороны, а при охлаждении пар конденсируется в жидкость, и энергии у молекул все еще достаточно для почти свободного перемещения, но уже недостаточно, чтобы оторваться от притяжения других молекул и улететь. При дальнейшем охлаждении вода замерзает, становясь твердым телом, и энергии молекул уже недостаточно даже для свободного перемещения внутри тела. Они колеблются около одного места, удерживаемые силами притяжения других молекул.

Определение 1

Агрегатные состояния вещества (от лат. “aggrego” означает “присоединяю”, “связываю”) – это состояния одного и того же вещества в твердом, жидком и газообразном виде.

При переходе из одного состояния в другое наблюдается скачкообразное изменение энергии, энтропии, плотности и прочих свойств вещества.

Твердые и жидкие тела

Определение 2

Твердые тела – это тела, которые отличаются постоянством своей формы и объема.

В твердых телах межмолекулярные расстояния маленькие, а потенциальную энергию молекул можно сравнить с кинетической.

Твёрдые тела подразделяются на 2 вида:

  1. Кристаллические;
  2. Аморфные.

В состоянии термодинамического равновесия находятся только лишь кристаллические тела. Аморфные же тела по факту представляют собой метастабильные состояния, которые по строению схожи с неравновесными, медленно кристаллизующимися жидкостями. В аморфном теле происходит чересчур медленный процесс кристаллизации, процесс постепенного преобразования вещества в кристаллическую фазу. Разница кристалла от аморфного твердого тела состоит, в первую очередь, в анизотропии его свойств. Свойства кристаллического тела определяются в зависимости от направления в пространстве. Разнообразные процессы (например, теплопроводность, электропроводность, свет, звук) распространяются в разных направлениях твердого тела по-разному. А вот аморфные тела (например, стекло, смолы, пластмассы) изотропные, как и жидкости. Разница аморфных тел от жидкостей заключается лишь только в том, что последние текучие, в них не происходят статические деформации сдвига.

У кристаллических тел правильное молекулярное строение. Именно за счет правильного строения кристалл имеет анизотропные свойства. Правильное расположение атомов кристалла создает так называемую кристаллическую решетку. В разных направлениях месторасположение атомов в решетке различное, что и приводит к анизотропии. Атомы (ионы либо целые молекулы) в кристаллической решетке совершают беспорядочное колебательное движение возле средних положений, которые и рассматриваются в качестве узлов кристаллической решетки. Чем выше температура, тем выше энергия колебаний, а значит, и средняя амплитуда колебаний. В зависимости от амплитуды колебаний определяется размер кристалла. Увеличение амплитуды колебаний приводит к увеличению размеров тела. Таким образом, объясняется тепловое расширение твердых тел.

Определение 3

Жидкие тела – это тела, имеющие определенный объем, но не имеющие упругой формы.

Для вещества в жидком состоянии характерно сильное межмолекулярное взаимодействие и малая сжимаемость. Жидкость занимает промежуточное положение между твердым телом и газом. Жидкости, также как и газы, обладают изотpопными свойствами. Помимо этого, жидкость обладает свойством текучести. В ней, как и в газах, нет касательного напряжения (напряжения на сдвиг) тел. Жидкости тяжелые, то есть их удельные веса можно сравнить с удельными весами твердых тел. Вблизи температур кристаллизации их теплоемкости и прочие тепловые свойства близки к соответствующим свойствам твердых тел. В жидкостях наблюдается до заданной степени правильное расположение атомов, но только лишь в маленьких областях. Здесь атомы также проделывают колебательное движение около узлов квазикристаллической ячейки, однако в отличие от атомов твердого тела они периодически перескакивают от одного узла к другому. В итоге движение атомов будет весьма сложное: колебательное, но вместе с тем центр колебаний перемещается в пространстве.

Определение 4

Газ – это такое состояние вещества, при котором расстояния между молекулами огромны.

Силами взаимодействия между молекулами при небольших давлениях можно пренебречь. Частицы газа заполоняют весь объем, который предоставлен для газа. Газы рассматривают как сильно перегретые либо ненасыщенные пары. Особый вид газа – плазма (частично или полностью ионизированный газ, в котором плотности положительных и отрицательных зарядов почти одинаковые). То есть плазма – это газ из заряженных частиц, взаимодействующих между собой при помощи электрических сил на большом расстоянии, но не имеющих ближнего и дальнего расположения частиц.

Как известно, вещества способны переходить из одного агрегатного состояния в другое.

Определение 5

Испарение – это процесс изменения агрегатного состояния вещества, при котором с поверхности жидкости либо твердого тела вылетают молекулы, кинетическая энергия которых преобразовывает потенциальную энергию взаимодействия молекул.

Испарение является фазовым переходом. При испарении часть жидкости или твердого тела преобразуется в пар.

Определение 6

Вещество в газообразном состоянии, которое находится в динамическом равновесии с жидкостью, называется насыщенным паром . При этом изменение внутренней энергии тела равняется:

∆ U = ± m r (1) ,

где m – это масса тела, r – это удельная теплота парообразования (Д ж / к г) .

Определение 7

Конденсация представляет собой процесс, обратный парообразованию.

Изменение внутренней энергии рассчитывается по формуле (1) .

Определение 8

Плавление – это процесс преобразования вещества из твердого состояния в жидкое, процесс изменения агрегатного состояния вещества.

При нагревании вещества растет его внутренняя энергия, поэтому увеличивается скорость теплового движения молекул. При достижении веществом своей температуры плавления кристаллическая решетка твердого тела разрушается. Связи между частицами также разрушаются, растет энергия взаимодействия между частицами. Теплота, которая передается телу, идет на увеличение внутренней энергии данного тела, и часть энергии расходуется на совершение работы по изменению объема тела при его плавлении. У многих кристаллических тел объем увеличивается при плавлении, однако есть исключения (к примеру, лед, чугун). Аморфные тела не обладают определенной температурой плавления. Плавление представляет собой фазовый переход, который характеризуется скачкообразным изменением теплоемкости при температуре плавления. Температура плавления зависит от вещества и она остается неизменной в ходе процесса. Тогда изменение внутренней энергии тела равняется:

∆ U = ± m λ (2) ,

где λ – это удельная теплота плавления (Д ж / к г) .

Определение 9

Кристаллизация представляет собой процесс, обратный плавлению.

Изменение внутренней энергии рассчитывается по формуле (2) .

Изменение внутренней энергии каждого тела системы при нагревании или охлаждении вычисляется по формуле:

∆ U = m c ∆ T (3) ,

где c – это удельная теплоемкость вещества, Д ж к г К, △ T – это изменение температуры тела.

Определение 10

При рассматривании преобразований веществ из одних агрегатных состояний в другие нельзя обойтись без так называемого уравнения теплового баланса : суммарное количество теплоты, выделяемое в теплоизолированной системе, равняется количеству теплоты (суммарному), которое в данной системе поглощается.

Q 1 + Q 2 + Q 3 + . . . + Q n = Q " 1 + Q " 2 + Q " 3 + . . . + Q " k .

По сути, уравнение теплового баланса – это закон сохранения энергии для процессов теплообмена в термоизолированных системах.

Пример 1

В теплоизолированном сосуде находятся вода и лед с температурой t i = 0 ° C . Масса воды m υ и льда m i соответственно равняется 0 , 5 к г и 60 г. В воду впускают водяной пар массой m p = 10 г при температуре t p = 100 ° C . Какой будет температура воды в сосуде после того, как установится тепловое равновесие? При этом теплоемкость сосуда учитывать не нужно.

Рисунок 1

Решение

Определим, какие процессы осуществляются в системе, какие агрегатные состояния вещества мы наблюдали и какие получили.

Водяной пар конденсируется, отдавая при этом тепло.

Тепловая энергия идет на плавление льда и, может быть, нагревание имеющейся и полученной изо льда воды.

Прежде всего, проверим, сколько теплоты выделяется при конденсации имеющейся массы пара:

Q p = - r m p ; Q p = 2 , 26 · 10 6 · 10 - 2 = 2 , 26 · 10 4 (Д ж) ,

здесь из справочных материалов у нас есть r = 2 , 26 · 10 6 Д ж к г – удельная теплота парообразования (применяется и для конденсации).

Для плавления льда понадобится следующее количество тепла:

Q i = λ m i Q i = 6 · 10 - 2 · 3 , 3 · 10 5 ≈ 2 · 10 4 (Д ж) ,

здесь из справочных материалов у нас есть λ = 3 , 3 · 10 5 Д ж к г – удельная теплота плавления льда.

Выходит, что пар отдает тепла больше, чем необходимо, только для расплавления имеющегося льда, значит, уравнение теплового баланса запишем следующим образом:

r m p + c m p (T p - T) = λ m i + c (m υ + m i) (T - T i) .

Теплота выделяется при конденсации пара массой m p и остывании воды, образуемой из пара от температуры T p до искомой T . Теплота поглощается при плавлении льда массой m i и нагревании воды массой m υ + m i от температуры T i до T . Обозначим T - T i = ∆ T для разности T p - T получаем:

T p - T = T p - T i - ∆ T = 100 - ∆ T .

Уравнение теплового баланса будет иметь вид:

r m p + c m p (100 - ∆ T) = λ m i + c (m υ + m i) ∆ T ; c (m υ + m i + m p) ∆ T = r m p + c m p 100 - λ m i ; ∆ T = r m p + c m p 100 - λ m i c m υ + m i + m p .

Сделаем вычисления с учетом того, что теплоемкость воды табличная

c = 4 , 2 · 10 3 Д ж к г К, T p = t p + 273 = 373 К, T i = t i + 273 = 273 К: ∆ T = 2 , 26 · 10 6 · 10 - 2 + 4 , 2 · 10 3 · 10 - 2 · 10 2 - 6 · 10 - 2 · 3 , 3 · 10 5 4 , 2 · 10 3 · 5 , 7 · 10 - 1 ≈ 3 (К) ,

тогда T = 273 + 3 = 276 К

Ответ: Температура воды в сосуде после установления теплового равновесия будет равняться 276 К.

Пример 2

На рисунке 2 изображен участок изотермы, который отвечает переходу вещества из кристаллического в жидкое состояние. Что соответствует данному участку на диаграмме p , T ?

Рисунок 2

Ответ: Вся совокупность состояний, которые изображены на диаграмме p , V горизонтальным отрезком прямой на диаграмме p , T показано одной точкой, которая определяет значения p и T , при которых происходит преобразование из одного агрегатного состояния в другое.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Агрегатные состояния вещества (от латинского aggrego - присоединяю, связываю) - это состояния одного и того же вещества, переходам между которыми соответствуют скачкообразные изменения свободной энергии, энтропии, плотности и других физических параметров вещества.

Газ (французское gaz, происшедшее от греческого chaos - хаос) - это агрегатное состояние вещества, в котором силы взаимодействия его частиц, заполняющих весь предоставленный им объем, пренебрежимо малы. В газах межмолекулярные расстояния велики и молекулы движутся практически свободно.

  • Газы можно рассматривать как значительно перегретые или малонасыщенные пары.
  • Над поверхностью каждой жидкости вследствие испарения находится пар. При повышении давления пара до определенного предела, называемого давлением насыщенного пара, испарение жидкости прекращается, так как давление пара и жидкости становится одинаковым.
  • Уменьшение объема насыщенного пара вызывает конденсацию части пара, а не повышение давления. Поэтому давление пара не может быть выше давления насыщенного пара. Состояние насыщения характеризуется массой насыщения, содержащейся в 1м массой насыщенного пара, которая зависит от температуры. Насыщенный пар может стать ненасыщенным, если увеличивать его объем или повышать температуру. Если температура пара много выше точки кипения, соответствующей данному давлению, пар называется перегретым.

Плазмой называется частично или полностью ионизированный газ, в котором плотности положительных и отрицательных зарядов практически одинаковы. Солнце, звезды, облака межзвездного вещества состоят из газов - нейтральных или ионизованных (плазмы). В отличие от других агрегатных состояний плазма представляет собой газ заряженных частиц (ионов, электронов), которые электрически взаимодействуют друг с другом на больших расстояниях, но не обладают ни ближним, ни дальним порядками в расположении частиц.

Жидкость - это агрегатное состояние вещества, промежуточное между твердым и газообразным.

  1. Жидкостям присущи некоторые черты твердого вещества (сохраняет свой объем, образует поверхность, обладает определенной прочностью на разрыв) и газа (принимает форму сосуда, в котором находится).
  2. Тепловое движение молекул (атомов) жидкости представляет собой сочетание малых колебаний около положений равновесия и частых перескоков из одного положения равновесия в другое.
  3. Одновременно происходят медленные перемещения молекул и их колебания внутри малых объемов, частые перескоки молекул нарушают дальний порядок в расположении частиц и обусловливают текучесть жидкостей, а малые колебания около положений равновесия обусловливают существование в жидкостях ближнего порядка.

Жидкости и твердые вещества, в отличие от газов, можно рассматривать как высоко конденсированные среды. В них молекулы (атомы) расположены значительно ближе друг к другу и силы взаимодействия на несколько порядков больше, чем в газах. Поэтому жидкости и твердые вещества имеют существенно ограниченные возможности для расширения, заведомо не могут занять произвольный объем, а при постоянных давлении и температуре сохраняют свой объем, в каком бы объеме их не размещали. Переходы из более упорядоченного по структуре агрегатного состояния в менее упорядоченное могут происходить и непрерывно. В связи с этим вместо понятия агрегатного состояния целесообразно пользоваться более широким понятием - понятием фазы.

Фазой называется совокупность всех частей системы, обладающих одинаковым химическим составом и находящихся в одинаковом состоянии. Это оправдано одновременным существованием термодинамически равновесных фаз в многофазной системе: жидкости со своим насыщенным паром; воды и льда при температуре плавления; двух несмешивающихся жидкостей (смесь воды с триэтиламином), отличающихся концентрациями; существованием аморфных твердых веществ, сохраняющих структуру жидкости (аморфное состояние).

Аморфное твердое состояние вещества является разновидностью переохлажденного состояния жидкости и отличается от обычных жидкостей существенно большей вязкостью и численными значениями кинетических характеристик.

Кристаллическое твердое состояние вещества - это агрегатное состояние, которое характеризуется большими силами взаимодействия между частицами вещества (атомами, молекулами, ионами). Частицы твердых тел совершают колебания около средних равновесных положений, называемых узлами кристаллической решетки; структура этих веществ характеризуется высокой степенью упорядоченности (дальним и ближним порядком) - упорядоченностью в расположении (координационный порядок), в ориентации (ориентационный порядок) структурных частиц, или упорядоченностью физических свойств (например, в ориентации магнитных моментов или электрических дипольных моментов). Область существования нормальной жидкой фазы для чистых жидкостей, жидкого и жидких кристаллов ограничена со стороны низких температур фазовыми переходами соответственно в твердое (кристаллизацией), сверхтекучее и жидко-анизотропное состояние.

Вся материя может существовать в одном из четырех видов. Каждый из них — это определенное агрегатное состояние вещества. В природе Земли только одно представлено сразу в трех из них. Это вода. Ее легко увидеть и испаренную, и расплавленную, и отвердевшую. То есть пар, воду и лед. Ученые научились проводить изменение агрегатных состояний вещества. Самую большую сложность для них составляет только плазма. Для этого состояния нужны особенные условия.

Что это такое, от чего зависит и как характеризуется?

Если тело перешло в другое агрегатное состояние вещества, то это не значит, что появилось что-то другое. Вещество остается прежним. Если у жидкости были молекулы воды, то такие же они будут и у пара со льдом. Изменится только их расположение, скорость движения и силы взаимодействия друг с другом.

При изучении темы «Агрегатные состояния (8 класс)» рассматриваются только три из них. Это жидкость, газ и твердое тело. Их проявления зависят от физических условий окружающей среды. Характеристики этих состояний представлены в таблице.

Название агрегатного состояния твердое тело жидкость газ
Его свойства сохраняет форму с объемом имеет постоянный объем, принимает форму сосуда не имеет постоянных объема и формы
Расположение молекул в узлах кристаллической решетки беспорядочное хаотичное
Расстояние между ними сравнимо с размерами молекул приблизительно равно размерам молекул существенно больше их размеров
Как двигаются молекулы колеблются около узла решетки не перемещаются от места равновесия, но иногда совершают большие скачки беспорядочное с редкими столкновениями
Как они взаимодействуют сильно притягиваются сильно притягиваются друг к другу не притягиваются, силы отталкивания проявляются при ударах

Первое состояние: твердое тело

Его принципиальное отличие от других в том, что молекулы имеют строго определенное место. Когда говорят про твердое агрегатное состояние, то чаще всего имеют в виду кристаллы. В них структура решетки симметричная и строго периодичная. Поэтому она сохраняется всегда, как далеко не распространялось бы тело. Колебательного движения молекул вещества недостаточно для того, чтобы разрушить эту решетку.

Но существуют еще и аморфные тела. В них отсутствует строгая структура в расположении атомов. Они могут быть где угодно. Но это место так же стабильно, как и в кристаллическом теле. Отличие аморфных веществ от кристаллических в том, что у них нет определенной температуры плавления (отвердевания) и им свойственна текучесть. Яркие примеры таких веществ: стекло и пластмасса.

Второе состояние: жидкость

Это агрегатное состояние вещества представляет собой нечто среднее между твердым телом и газом. Поэтому сочетает в себе некоторые свойства от первого и второго. Так, расстояние между частицами и их взаимодействие похоже на то, что было в случае с кристаллами. Но вот расположение и движение ближе к газу. Поэтому и форму жидкость не сохраняет, а растекается по сосуду, в который налита.

Третье состояние: газ

Для науки под названием «физика» агрегатное состояние в виде газа стоит не на последнем месте. Ведь она изучает окружающий мир, а воздух в нем очень распространен.

Особенности этого состояния заключаются в том, что силы взаимодействия между молекулами практически отсутствуют. Этим объясняется их свободное движение. Из-за которого газообразное вещество заполняет весь объем, предоставленный ему. Причем в это состояние можно перевести все, нужно только увеличить температуру на нужную величину.

Четвертое состояние: плазма

Это агрегатное состояние вещества представляет собой газ, который полностью или частично ионизирован. Это значит, что в нем число отрицательно и положительно заряженных частиц практически одинаковое. Возникает такая ситуация при нагревании газа. Тогда происходит резкое ускорение процесса термической ионизации. Оно заключается в том, что молекулы делятся на атомы. Последние потом превращаются в ионы.

В рамках Вселенной такое состояние очень распространено. Потому что в нем находятся все звезды и среда между ними. В границах Земной поверхности оно возникает крайне редко. Если не считать ионосферы и солнечного ветра, плазма возможна только во время грозы. Во вспышках молнии создаются такие условия, в которых газы атмосферы переходят в четвертое состояние вещества.

Но это не означает, что плазму не создали в лаборатории. Первое, что удалось воспроизвести — это газовый разряд. Теперь плазма заполняет лампы дневного света и неоновую рекламу.

Как осуществляется переход между состояниями?

Для этого нужно создать определенные условия: постоянное давление и конкретную температуру. При этом изменение агрегатных состояний вещества сопровождается выделением или поглощением энергии. Причем этот переход не происходит молниеносно, а требует определенных временных затрат. В течение всего этого времени условия должны быть неизменными. Переход происходит при одновременном существовании вещества в двух ипостасях, которые поддерживают тепловое равновесие.

Первые три состояния вещества могут взаимно переходить одно в другое. Существуют прямые процессы и обратные. Они имеют такие названия:

  • плавление (из твердого в жидкое) и кристаллизация , например, таяние льда и отвердевание воды;
  • парообразование (из жидкого в газообразное) и конденсация , примером является испарение воды и получение ее из пара;
  • сублимация (из твердого в газообразное) и десублимация , к примеру, испарение сухого ароматизатора для первого из них и морозные узоры на стекле ко второму.

Физика плавления и кристаллизации

Если твердое тело нагревать, то при определенной температуре, называемой температурой плавления конкретного вещества, начнется изменение агрегатного состояния, которое называется плавление. Этот процесс идет с поглощением энергии, которая называется количеством теплоты и обозначается буквой Q . Для ее расчета потребуется знать удельную теплоту плавления , которая обозначается λ . И формула принимает такое выражение:

Q = λ * m , где m — масса вещества, которое задействовано в плавлении.

Если происходит обратный процесс, то есть кристаллизация жидкости, то условия повторяются. Отличие только в том, что энергия выделяется, и в формуле появляется знак «минус».

Физика парообразования и конденсации

При продолжении нагревания вещества, оно постепенно приблизится к температуре, при которой начнется его интенсивное испарение. Этот процесс называется парообразованием. Оно опять же характеризуется поглощением энергии. Только для его вычисления требуется знать удельную теплоту парообразования r . А формула будет такой:

Q = r * m .

Обратный процесс или конденсация происходят с выделением того же количества теплоты. Поэтому в формуле опять появляется минус.

Понравилась статья? Поделитесь с друзьями!